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a b s t r a c t

Building energy optimization (BEO) is an emerging technique for achieving energy-efficient building
designs. The performance of optimization algorithms is crucial for achieving effective and efficient BEO
techniques. In some cases, optimization algorithms can be ineffective, which results in the failure of the
BEO process to identify an optimal design. Thus, it is important to investigate the reasons that cause
algorithms to be ineffective in BEO. This study begins with a systematic definition of optimization al-
gorithms' ineffectiveness, describing five ineffective scenarios. Then, a reference building and a repre-
sentative energy optimization problem are proposed. Four commonly used optimization algorithms,
namely, discrete Armijo gradient, Hooke-Jeeves, particle swarm optimization with constriction coeffi-
cient (PSOCC) and particle swarm optimization with inertia weight (PSOIW), are tested to determine the
circumstances and the causal factors under which they become ineffective. The results shed more light
on the performance of algorithms in BEO and can be used to help designers avoid ineffective algorithms.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

The rapid growth of energy use worldwide has raised concerns
about supply difficulties, the exhaustion of energy resources and
severe environmental impacts (e.g., ozone layer depletion, global
warming, and climate change). Specifically, the building sector is
very energy intensive, accounting for approximately 39% of the
primary energy use worldwide [1]. In this scenario, building de-
signs that emphasize energy efficiency are therefore significant for
achieving energy conservation and reducing environmental
impacts.

As shown in several important review works [2,3], a new
technique known as building energy optimization (BEO) has
become a very active research field. Its benefits have been
demonstrated to potentially reduce building energy use by as much
as 30% resulting from a benchmark design [4]. As shown in Fig. 1,
the BEO technique relies on optimization algorithms to generate
new designs based on energy simulation results and predefined
theast University, 2 Si Pai Lou,
design objectives [5]. This technique has been widely used in the
optimization of building envelopes (e.g., construction, form,
double-skin facades), building systems (e.g., HVAC, lighting) and
renewable energy generation (e.g., combined heat and power
(CHP), solar technologies, ground energy and storage systems). For
example, Lorestani and Ardehali [6] used a newly developed
evolutionary particle swarm optimization (PSO) algorithm to
develop a simulation model for optimization of an autonomous
CHP system that incorporates renewable energy sources. Pereira
and Aeleneia [7] used a genetic algorithm (GA) to optimize the
efficiency of a building-integrated photovoltaic/thermal-phase
change material (BIPV/T-PCM) installed in an office building façade.
Baniassadi et al. [8] used a GA to optimize an off-grid wind turbine
while considering the demand profile.

As shown in Fig. 1, optimization algorithms play a vital role in
the BEO workflow. Therefore, the performance of optimization al-
gorithms is significant for the effectiveness and efficiency of the
BEO technique. The optimization algorithms commonly used in
BEO are illustrated in Fig. 2. They can be grouped into three cate-
gories: direct search algorithms, intelligent optimization algo-
rithms, and hybrid algorithms. According to our previous review
[9], intelligent optimization algorithms are used most frequently in
BEO, accounting for approximately 64% of the core literature, fol-
lowed by direct search algorithms (approximately 16%) and hybrid



Fig. 1. Workflow of the BEO technique.

Fig. 2. Optimization algorithms commonly used in BEO.
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algorithms (approximately 10%). Among the intelligent optimiza-
tion algorithms, the GA and its modified versions dominate, ac-
counting for approximately 41% of the core literature, followed by
the PSO algorithm (approximately 13% of the core literature).

Although many algorithms are currently used in BEO, according
to the so-called “no-free-lunch theorem,” a general-purpose, uni-
versal optimization algorithm is, however, impossible [10]. It is
difficult to find an optimization algorithm that performs well for all
optimization problems. Similarly, not all algorithms are effective for
any given building optimization problem. Therefore, in addition to
focusing on the effective optimization algorithms, the ineffective
optimization algorithms and the reasons for their ineffectiveness
when they are used in BEO are equally worth studying. Such
knowledge would allow designers to choose an appropriate algo-
rithm among the available options and to help them avoid inef-
fective algorithms. However, existing works targeting the
ineffectiveness of algorithms in BEO are rare. Moreover, some
related problems have not yet been adequately addressed, such as a
firm definition of algorithm ineffectiveness, the reasons that may
cause an algorithm to be ineffective, and its risk of becoming
ineffective.

1.2. Literature review

1.2.1. Studies focusing on the performance of optimization
algorithms in nonarchitectural fields

The existing literature on the performance of optimization al-
gorithms is mostly from nonarchitectural fields. However, a clear
definition of ineffective optimization algorithms was not readily
available in the literature. Most studies were conducted by
comparing the performance of different algorithms based on a set
of performance criteria to determinewhich algorithm is better than
another. For example, different groups of test functions with diffi-
cult features have been proposed within the context of the IEEE
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Congress on Evolutionary Computation (IEEE-CEC) competitions
[11,12], which are of great importance for evaluating and comparing
the performance of modified or newly proposed algorithms. Eval-
uation criteria, namely, success rate, convergence graphs, algorithm
complexity, parameters, and encoding were proposed for the per-
formance comparison of different algorithms. However, whether
the performance evaluation results of optimization algorithms on
test functions hold for BEO problems is still a question. One reason
is the objective function evaluation of a test function is very fast
when using MatLab or other mathematical software. However, the
time needed to complete a simulation of a detailed building model
varies from several minutes to several hours. In this case, an algo-
rithm that is found to be effective for a test function may not
achieve the same level of performance for a BEO problem because
the maximum number of objective function evaluations available
for BEO problems can be 100e1000 magnitudes smaller than that
for test functions considering the limited computing time, which
may greatly impact the quality of the final optimization results.

1.2.2. Studies focusing on the effectiveness and ineffectiveness of
optimization algorithms in BEO

According to the recently published review in Ref. [9], only a few
researchers in the field of building optimization have paid close
attention to the performance (e.g., effectiveness or ineffectiveness)
of algorithms used in BEO. Among them, the number of research
studies focusing on ineffective algorithms and the reasons for their
ineffectiveness are scarce. Most of the attention has been paid to
the best algorithms. Those ineffective algorithms that behave
poorly for optimization problems and the reasons that cause their
poor behavior are usually ignored. For example, Hofpe [13] assessed
the performance of two multiobjective optimization algorithms
(MOOAs), the nondominated sorting genetic algorithm (NSGA-II)
and the S-metric selection multiobjective evolutionary algorithm
(SMS EMOA). She found that the performance of the NSGA-II was
not satisfactory on all the tests, while the SMS EMOA yielded more
competitive results but required a much higher number of simu-
lations. However, the cause of the ineffectiveness of the NSGA-II
remained unknown. Hamdy et al. [14] compared the effectiveness
and efficiency of seven commonly usedmultiobjective evolutionary
optimization algorithms in solving a design problem of a nearly
zero-energy building. The results indicated that the two-phase
optimization using the genetic algorithm (PR_GA) performed
best, followed by the controlled nondominated sorting genetic al-
gorithm with a passive archive (pNSGA-II), the multiobjective
evolutionary algorithm based on the concept of epsilon dominance
(evMOGA) and the multiobjective differential evolution algorithm
(spMODE-II). In contrast, the elitist nondominated sorting evolu-
tion strategy (ENSES), the multiobjective particle swarm optimi-
zation (MOPSO) and the multiobjective dragonfly algorithm
(MODA) algorithms achieved uncompetitive results in most cases.
However, the reasons for those results were not explored. There-
fore, this paper aims to fill the knowledge gaps regarding the
ineffectiveness of optimization algorithms specifically used in BEO
and help users avoid ineffective algorithms.

1.2.3. Studies that did not address algorithm performance in BEO
The vast majority of BEO studies simply apply some algorithms

to specific optimization problems without paying attention to the
performance of the algorithms, much less addressing the problems
of ineffective algorithms or the reasons for their ineffectiveness.
Sundareswaran and Palani [15] developed a new algorithm for
maximum power point tracking (MPPT) in large PV systems under
partial shading conditions (PSC). The new algorithm used the PSO
algorithm for MPPT during the initial stages of tracking and then
employed the traditional perturb and observe (PO) method at the
final stages. Sharafi et al. [16] developed a simulation-based met-
aheuristic approach that determines the optimal size of a hybrid
renewable energy system for residential buildings. A dynamic
MOPSO algorithm was used to maximize the renewable energy
ratio of buildings and minimize the total net present costs and CO2
emissions for required system changes. Wang et al. [17] used a GA
to optimize the configuration of a biomass gasification-based
building, cooling, heating and power (BCHP) system with a ther-
mal storage unit and hybrid cooling system to minimize the annual
total cost (ATC).

1.3. Research outline

The research outline of this paper is as follows:
C Define the ineffectiveness of optimization algorithms in BEO.
C Present and explain typical situations where optimization

algorithms are ineffective.
C Develop a representative BEO problem for algorithm per-

formance evaluation.
C Evaluate four commonly used optimization algorithms and

analyze the reasons why they become ineffective.

The reasons why the study presented in this paper is both
valuable and timely are multifold. On the theoretical side, the
performance of optimization algorithms is critical to the overall
effectiveness and efficiency of BEO techniques. Although some al-
gorithms are known to be ineffective for some BEO problems, the
reasons for their ineffectiveness in these cases are unclear, and
relevant research is scarce. Therefore, the results obtained from this
study can deepen our understanding of optimization algorithms
and of BEO in general. On the application side, understanding the
reasons why optimization algorithms are ineffective can help ar-
chitects, engineers, and consultants select the appropriate optimi-
zation algorithms and set their parameters to effectively apply the
BEO technique and to better design and use various energy-saving
and renewable energy generation measures.

The remainder of this paper is organized as follows: Section 2
proposes the definition of ineffective optimization algorithms in
BEO. Section 3 presents five typical situations in which optimiza-
tion algorithms become ineffective. For each situation, a clear
description and a schematic diagram are given to assist the reader's
understanding. Section 4 establishes a reference building and a
representative optimization problem based on the medium office
building developed by the U.S. Department of Energy (DOE). In
Section 5, four commonly used optimization algorithms are
selected and applied to the representative BEO problem. The rea-
sons why they become ineffective are explored in detail. Finally,
Section 6 concludes the paper.

2. Definition of optimization algorithms' ineffectiveness in
BEO

For a given BEO problem, if an optimization algorithm can
reliably find a satisfactory optimal solution within a given period of
time, it is considered effective for that particular problem. It follows
that an effective optimization algorithm should simultaneously
meet three criteria: (1) be able to deliver a satisfactory optimal
solution, (2) be able to complete the optimization process within a
given time constraint, and (3) demonstrate good reliability.
Therefore, an algorithm that violates any of these three criteria is
considered ineffective. The three criteria are explained as follows.

2.1. Satisfactory optimal solution

For a BEO problem, the optimal solution obtained by an



Fig. 3. A possible graph of a single-variable function.
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algorithm is deemed satisfactory if the desired solution quality is
achieved. The quality of a solution can be measured by the differ-
ence between the optimal solution of the algorithm and the true
optimum, as shown in Eq. (1).

d ¼
��f
�
X

0�� f
�
X*

���

f ðX*Þ � 100%; (1)

where f(X0) is the objective function value of the optimal solution
found by the algorithm, and f(X*) is the objective function value of
the true optimum, which in some cases can be obtained through a
brute-force searchmethod. Note that sometimes, the true optimum
of an optimization problem is unavailable; then, a reference solu-
tion can be used in the place of the true optimum, which can be
obtained by running the optimization process as many times as
possible and selecting the best solution.

Therefore, to determine whether the quality of an optimal so-
lution is satisfactory, the value of d calculated by Eq. (1) must be
compared with a desired accuracy level d* which depends on how
accurate the final optimization results need to be. When the value
of d is larger than that of d*, the quality of the optimal solution is
considered unsatisfactory; thus, the algorithm is ineffective for that
particular optimization process.

2.2. Time constraint

Due to limited time and resources, an optimization run must
stop at some point. For an annual building energy simulation, the
computation time required can vary from a few seconds [18] to
several hours [19]. However, a BEO process typically involves
hundreds or even thousands of annual building energy simulation
runs to obtain a near-optimal solution. Therefore, the time required
varies from several minutes to several hours or even days. To ensure
that an optimization process is both timely and practical, the
optimization algorithm must be able to find a satisfactory optimal
solution within a limited time constraint. Otherwise, it is consid-
ered ineffective.

2.3. Good reliability

Good reliability implies that an optimization algorithm can
consistently find a satisfactory optimal solution for a given opti-
mization test when it is repeated multiple times with all relevant
settings unchanged (e.g., selection of the initial solution, settings of
algorithm control parameters, etc.). However, stochastic optimiza-
tion algorithms (e.g., GA, PSO, etc.), which involve random opera-
tors in their optimization processes, can result in different optimal
solutions after each repeated run. In this case, if such algorithms do
not necessarily guarantee a satisfactory optimum for every
repeated run, they can be ineffective for the given optimization
problem. In addition, when a user is unsurewhich optimization run
will achieve a satisfactory optimum, the same optimization test
must be executed as many times as possible to select the best one,
leading to extended computing time and considerable uncertainty.

Algorithm reliability can be measured using the success rate
achieved by repeating the same optimization run multiple times.
Specifically, a successful run converges to a satisfactory optimal
solutionwithin a limited time constraint. Eq. (2) provides a formula
that, in essence, is the ratio of successful runs to the total runs.

b ¼ Nsuccess

Ntotal
� 100%; (2)

whereNsuccess is the number of successful runs, and Ntotal is the total
number of repeated runs.
According to the low probability event (LPE) principle [20], which
is an important theorem in probability and commonly applied in
practical projects andmathematical statistics, an LPE is considered as
one that will not occur in the actual environment. Generally, the
probability of an LPE is considered as 1%, 5% or 10%. In this study, LPE
values of 5% and 10% are used to rank the reliability level of an algo-
rithm. Consequently, for a given BEO problem, when 100%� b � 5%,
the reliabilityof the algorithmisperfect.When5% � 100%� b � 10%,
the algorithm's reliability is acceptable. However, when 100%�
b>10%, the reliability of the algorithm is poor, and the algorithm is
considered ineffective for the given optimization problem.

3. Typical situations in which optimization algorithms are
ineffective in BEO

Five typical situations in which optimization algorithms are
ineffective are presented and explained in detail in this section. In
these situations, each algorithm violates at least one of the afore-
mentioned three effectiveness criteria.

3.1. Falling into local optima traps

One potential situation in which an optimization algorithm is
ineffective is when it becomes trapped in local optimum. In applied
mathematics and computer science, a local optimum of an opti-
mization problem is a solution that is optimal (either maximal or
minimal) within a neighboring set of candidate solutions [21]. A
local optimum differs from a global optimum in that the latter is the
optimal solution among all possible solutions, not just those in a
particular neighborhood of values.

The objective functions used in BEO problems, such as annual
energy consumption or heating and cooling loads, are always
multimodal. As Fig. 3 shows, the global (true) optimal solution is
located at point O. Two local optimal solutions, points A and B, also
exist in the figure. If an optimization algorithm can find only point B
as the best solution, it is considered ineffective, because the
objective function value at point B is significantly larger than that at
point O, which indicates that the local optimal solution found is too
far away from the global optimal solution. However, it should be
noted that an optimization algorithm able to find point A as the best
solution could be considered effective. Although point A is still a
local optimal solution, it is so close to point O that the objective
difference between the found local optimal solution and the global
optimal solution is sufficiently small to be ignored.

In BEO, many factors may cause an algorithm to become trapped
in a local optimum, including the algorithm's control parameter



Fig. 5. An illustration of a nonconvergent optimization process driven by an algorithm.
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settings, the position of the initial solution, the search step size, and
the complexity of the optimization problem (e.g., the number of
design variables). Therefore, it is important to use proper strategies
to help optimization algorithms escape local optima.

3.2. Slow search speed

In BEO, search speed is vital for the effectiveness of an algorithm
because the final optimization result can vary substantially across
different runtime durations. When the runtime is restricted, high-
speed optimization algorithms are more likely to achieve better
solutions, and such algorithms can greatly reduce the computing
time, especially for complex BEO problems in which cost function
evaluation is usually time consuming.

Based on the aforementioned three effectiveness criteria, an
effective algorithm should obtain a desirable optimal solution
within the given time constraint. Therefore, when an algorithm
searches so slowly that it consistently cannot find a satisfactory
optimal solution before being terminated over successive runs,
then it is considered ineffective for the given problem. This situa-
tion is further illustrated in Fig. 4, which shows an optimization run
driven by an algorithm. The number of building simulations used
by the optimization is restricted to 300. However, the algorithm's
search is so slow that it is unable to find an optimal solution during
the 300 simulations, and finally converges to the true optimum
only at the 558th simulation, which far exceeds the time limit.
Therefore, this algorithm is considered ineffective for this case.

In BEO, many factors can decelerate the search process of an
algorithm and cause it to be ineffective. These factors include al-
gorithm control parameter settings, the position of the initial so-
lution, and the number of design variables. Hence, appropriate
approaches and specific techniques should be used to significantly
decrease the optimization runtime and help the algorithms reach
an acceptable optimum as soon as possible.

3.3. Nonconvergence

In general, the ideal convergence process for an algorithm is to
exhibit wide coverage and rapid global search during the initial
stages with precise fine-tuning around a close-to-optimal solution
in the later stages. It ensures that the optimization search is
diversified and that the optimal solution found by the algorithm
locates as closely as possible to the true optimum. However, as
shown in Fig. 5, if an algorithm maintains wide global search
coverage with large step sizes throughout the entire search process
and fails to fine-tune around a near optimum, then the algorithm
may be unable to converge to a solution with a quality as high as
expected. Consequently, the algorithm can be ineffective in the
optimization process.

In BEO, the factors that may cause algorithm convergence
Fig. 4. An illustration of a failure optimization case with slow search speed.
failures are multifarious. One possible factor is inappropriate al-
gorithm parameter settings. Optimization algorithms usually have
various parameters that must be defined to successfully execute the
optimizing process, some of which control the convergence of al-
gorithms. For example, when an evolutionary algorithm's crossover
rate is large, its global search ability is strong, but its local search
ability is weak, which may cause the algorithm to fail to precisely
converge and eventually lead to its ineffectiveness.

3.4. Midway termination

As shown in Fig. 6, another possible situation in which an
optimization algorithm can be ineffective is when the optimization
run suddenly terminates somewhere before meeting any of the
predetermined termination criteria. In this case, the algorithm is
considered ineffective in the optimization run if no satisfactory
optimal solution was found before termination.

In BEO, the reasons why an optimization run might terminate
before completion are various and should be analyzed according to
the specific optimization problem at hand. Such reasons include
unexpected runtime errors, inappropriate algorithm control param-
eter settings, etc. For example, in BEO, the simulation output may
become discontinuous at times when integer or discrete values are
assigned todesignvariables. Even foroptimizationproblems inwhich
all inputs are continuous parameters, the nature of the algorithms in
detailed building simulation programs itself often generates discon-
tinuities in the simulation outputs [22]. This feature may cause some
gradient-based optimization algorithms to be ineffective because
they may terminate when encountering discontinuities.
Fig. 6. An ineffective optimization case in which an algorithm suddenly terminates
without converging.



Fig. 8. A perspective view of the reference building.

Fig. 9. Division of the thermal zones on each floor.
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3.5. Poor reliability

An effective algorithm should have good reliability, as explained
in Section 2.3. Fig. 7 illustrates three different cases of reliability.
Each point with the same shape represents the optimal solution
obtained in each repeated run by the same algorithm. Clearly, all
the triangle solutions are concentrated within the satisfactory so-
lution scope. However, the circular solutions vary widely, and few
are located in the satisfactory solution scope. Moreover, although
the cross solutions are very similar to each other, which means the
algorithm stably found similar solutions, none of them are satis-
factory. Therefore, the reliability of algorithms 1 and 2 is poor, and
they are considered ineffective for the given optimization problem.
In contrast, Algorithm 3 can consistently find a satisfactory solu-
tion; therefore, its reliability is perfect in this case.

In BEO, many factors may cause an algorithm to lose reliability,
for example, the algorithm's control parameter settings and the
position of the initial solution in the design space.

4. Case study presentation

The previous sections defined the ineffectiveness of optimiza-
tion algorithms and presented typical ineffective situations. In this
section, four commonly used optimization algorithms are analyzed
with respect to their ineffectiveness for the underlying causes. A
reference building and a representative optimization problem are
proposed, to which the four selected algorithms are applied.

4.1. Reference building

A 3-story rectangular office building following the model of the
DOE medium office building [23] is used as the reference building
in this study. Its total floor area is 4982m2, and the floor height is
4m. Fig. 8 shows a perspective view of the building. As shown in
Fig. 9, there is one core thermal zone and four perimeter thermal
zones on each floor. The reference building is assumed to be located
in Baltimore, Maryland. The wall and roof construction types are
steel frame and IEAD, respectively, which were determined from an
analysis of the 2003 Commercial Buildings Energy Consumption
Survey (CEBCS) data [24] and other information by Pacific North-
west National Laboratory (PNNL) [25]. Note that the wall, roof, and
window thermal parameters were set to the standard 90.1e2004
[26] values. Specifically, the opaque wall and roof thermal resis-
tance are 1.42m2 K/W and 2.79m2 K/W, respectively. The window
thermal properties include the following: the U-value is 3.24W/
Fig. 7. An illustration of three different cases of reliability.
m2$K, the SHGC is 0.39, and the visible transmittance is 0.31. The
building is equippedwith a variable air volumeHVAC systemwith a
gas furnace and electric reheat. The sources of internal heat gains
include electric equipment (10.76W/m2), lights (10.76W/m2), and
heat release by people (18.58m2/person).
4.2. Representative optimization problem

In the present study, the optimization objective of all optimi-
zation runs is to minimize the annual energy consumption of the
reference building as calculated by EnergyPlus [27]. In addition, the
representative optimization problem consists of 7 continuous var-
iables: the conductivity of the exterior wall insulation, the building
orientation, the window upper positions in each façade, and the
cooling design supply air temperature used for sizing the HVAC
system. Specifically, the lower positions for all windows are fixed at
0.8m from the floor, and the windows in the same façade have
equal area. Table 1 lists the independent variables and their initial
value, best value, step size, and range of variation.
4.3. Selected optimization algorithms

The four optimization algorithms analyzed in this paper are the
discrete Armijo gradient algorithm [28], the Hooke-Jeeves algo-
rithm [29] and two versions of PSO algorithms [30] (i.e., the particle
swarm optimization with constriction coefficient (PSOCC) algo-
rithm and the particle swarm optimization with inertia weight
(PSOIW) algorithm). They belong to the “gradient-based,” “pattern
search” and “metaheuristic” classes of optimization algorithms,
respectively. A comprehensive description of each algorithm is not
provided in this paper, but interested readers are referred to [31] for
more technical information and a detailed description of each
algorithm.



Table 1
Specifications of optimization variables.

Design variables Symbol Unit Step size Range True optimum Initial value

Insulation Conductivity x1 W/m$K 0.0025 [0.01, 0.1] 0.01 0.049
Orientation x2 � 5 [30, 180] 180 120
South window upper position x3 m 0.05 [1.35, 2.7] 1.35 1.63
East window upper position x4 m 0.05 [1.35, 2.7] 1.35 1.8
North window upper position x5 m 0.05 [1.35, 2.7] 1.35 2.66
West window upper position x6 m 0.05 [1.35, 2.7] 1.35 1.35
Cooling supply air temperature x7 �C 0.2 [10, 20] 12.3 13
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5. Numerical experiments and results

The performance of an optimization algorithm depends to some
extent on its control parameters [32] and the initial solution.
Therefore, it is natural to investigate how the algorithm control
parameters and the position of the initial solution in the design
space lead to the ineffectiveness of the four selected optimization
algorithms.

In this study, GenOpt 3.1.1 [33] and EnergyPlus 8.3.0 [34] are
used to perform all optimization tests. Each optimization test is
repeated 10 times using each algorithm to evaluate the reliability of
each. For each optimization run, the process is terminated when
the number of simulations reaches 300. These numbers were
chosen to strike a balance between what is preferred and what is
practical in terms of computing time. All simulations were con-
ducted on a computer with an Intel (R) Core (TM) i7-6700HQ CPU@
2.60 GHz, 8 GB of main memory, and the Windows 10 operating
system. Each simulation took approximately 30 s to complete. Thus,
an optimization run with 300 simulations needed approximately
2e2.5 h, which is considered an appropriate duration of computing
time.
5.1. Identifying the true optimum

To compare the quality of the optimal solution obtained by an
algorithm, the true/reference optimal solution should be deter-
mined beforehand to calculate the difference between the optimal
solution of the algorithm and the true/reference optimal solution in
the objective space. In this study, the true optimum was identified
in advance using the brute-force search method. The specific steps
are described as follows. (1) The one-factor-at-a-time method (i.e.,
varying only one variable while keeping the others unchanged) was
used to explore the impact of each design variable on the annual
energy consumption of the reference building. The results indicated
that the variables of the wall insulation conductivity and the win-
dow upper positions in each façade all had negative impacts on the
annual energy consumption. That is, the annual energy consump-
tion of the reference building will increase as the values of these
variables increase. Therefore, the best value for these variables
should be the lower bounds of their ranges. (2) However, the
relationship between the annual energy consumption and the
other two optimization variables, namely, building orientation and
cooling supply air temperature, were found to be nonmonotonic.
Therefore, an exhaustive searchwas conducted by discretizing their
ranges using the step size listed in Table 1. Specifically, the values of
the other five variables maintained the lower bounds of their
ranges. As a result, the objective function values of 1581 solutions
were simulated using EnergyPlus and compared. Finally, the true
optimum for the representative optimization problem was identi-
fied as X*¼(0.01, 180, 1.35, 1.35, 1.35, 1.35, 12.3). The corresponding
objective function value of X* was simulated as 144.15 kWh/m2$a.
The desired accuracy level d* of satisfactory optimal solutions was
set at 1% in this study.
Note that the cost of the brute-force search method is propor-
tional to the number of candidate solutions, which in many prac-
tical problems tends to grow very quickly as the size of the problem
increases. Therefore, brute-force search is typically used when the
problem size is limited or when there are problem-specific heu-
ristics that can be used to reduce the set of candidate solutions to a
manageable size. All of these limitations of the brute-force search
method promote the use of optimization algorithms in BEO. For
those cases that the true optimum cannot be determined by the
brute-force method, a reference solution that is acceptable by the
designer can be used in place of the true optimum to compare the
quality of the optimal solution obtained by an algorithm.
5.2. Algorithm control parameters

All the control parameters involved in each algorithm are listed
in Table 2. Note that only a handful of these control parameters are
randomly chosen for each algorithm in each test, which are
underlined in Table 2. For the discrete Armijo gradient algorithm,
the alpha and beta parameters, which control the convergence, are
of particular importance and are therefore randomly set. For the
Hooke-Jeeves algorithm, the initial mesh size exponent, which af-
fects the search step size, is the key control parameter. For the PSO
algorithms, the cognitive acceleration and social acceleration pa-
rameters control the cognitive behavior and the social behavior of
particles, respectively. The values of these two parameters are
randomly selected to investigate whether or not they cause the
algorithm to be ineffective. Other control parameters for each
selected algorithm are set to values that have been demonstrated to
perform well for energy-related building design optimization
problems [35]. The authors conducted pretests to confirm these
settings.

Table 3 provides the results for the trial optimizations (each
statistic represents 10 repeated optimization runs), as well as the
reliability of each algorithm on each test calculated using Eq. (2). In
Fig.10, each algorithm has 4 consecutive boxplots, corresponding to
the 4 tests listed in Table 2. Each boxplot shows the quality variation
of the final optimization results generated by running the same
optimization test 10 times. Notably, to avoid the influence of
different initial solutions on the algorithm's performance evalua-
tion results, all optimization runs use the same initial solution lis-
ted in Table 1. Specifically, the quality of the selected initial solution
is high, as it is located near the global optimum in the design space.

Fig. 10 shows that when the alpha and beta parameters of the
discrete Armijo gradient algorithmwere set at different values, the
quality of the final optimization results varied correspondingly.
Specifically, on Tests 1, 2 and 3, the algorithm successfully
converged to a satisfactory optimal solution in each repeated run
within the time constraint, with a quality that met the desired
accuracy requirements. However, on Test 4, the algorithm searched
so slowly that it completed searching after 1718 simulations, which
greatly exceeds the given time budget (300 simulations). Conse-
quently, the optimal solution obtained in the first 300 simulations



Table 2
Algorithm control parameter settings for each test.

Common Termination criteria for all algorithms

Maximum iterations 2000
Maximum equal results 100
Maximum simulations 300

Test 1 Test 2 Test 3 Test 4

Discrete Armijo gradient
Alpha 0.7 0.2 0.5 0.9
Beta 0.6 0.3 0.8 0.9
Gamma 0.1 0.1 0.1 0.1
K0 0 0 0 0
KStar �10 �10 �10 �10
LMax 50 50 50 50
Kappa 25 25 25 25
EpsilonM 0.01 0.01 0.01 0.01
EpsilonX 0.5 0.5 0.5 0.5

Hooke-Jeeves
Mesh size divider 2 2 2 2
Initial mesh size exponent 0 1 2 3
Mesh size exponent increment 1 1 1 1
Number of step reductions 4 4 4 4

PSO
Neighborhood topology Von Neumann Von Neumann Von Neumann Von Neumann
Neighborhood size 5 5 5 5
Number of particles 5 5 5 5
Number of generations 35 35 35 35
Seed 0e9 0e9 0e9 0e9
Cognitive acceleration 2.8 2.3 1.8 1.3
Social acceleration 1.3 1.8 2.3 2.8
Maximum velocity gain continuous 0.5 0.5 0.5 0.5
Max velocity discrete 4 4 4 4

PSOCC
Constriction gain 0.5 0.5 0.5 0.5

PSOIW
Initial inertia weight 1.2 1.2 1.2 1.2
Final inertia weight 0 0 0 0

Table 3
Optimal solutions obtained by each algorithm in each test.

Algorithms Tests Objective values (kW$h/m2$a) Reliability b (%)

Minimum Maximum Mean Standard Deviation

PSOCC Test 1 150.74 157.82 154.12 2.45 0
Test 2 149.16 156.91 153.01 2.70 0
Test 3 147.88 155.90 151.44 2.68 0
Test 4 146.94 155.27 150.40 2.47 0

PSOIW Test 1 144.26 145.83 144.69 0.49 90
Test 2 144.21 145.86 144.73 0.51 90
Test 3 144.21 145.48 144.78 0.41 100
Test 4 144.31 146.28 144.98 0.61 90

Discrete Armijo gradient Test 1 144.53 144.53 144.53 0 100
Test 2 144.89 144.89 144.89 0 100
Test 3 144.73 144.73 144.73 0 100
Test 4 158.28 158.28 158.28 0 0

Hooke-Jeeves Test 1 144.18 144.18 144.18 0 100
Test 2 144.16 144.16 144.16 0 100
Test 3 144.16 144.16 144.16 0 100
Test 4 144.32 144.32 144.32 0 100
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is located so far from the true optimum that the relative difference
between their objective function values is considerably larger than
the desired accuracy level. Since the discrete Armijo gradient al-
gorithm belongs to the family of deterministic algorithms, the 10
repeated optimization runs on each test yielded the same results.
As a result, the reliability of the algorithm is 100% for Tests 1, 2 and 3
and is 0 for Test 4. Therefore, the discrete Armijo gradient algorithm
is considered effective for Tests 1, 2 and 3, and ineffective for Test 4.
It can be concluded that the alpha and beta parameters are possible
factors that may cause the discrete Armijo gradient algorithm to be
ineffective. Setting a large value for both may slow the search
speed, and as a result, affect the quality of the optimization result
and lead to the failure of the algorithm.

As shown in Fig. 10, for the Hooke-Jeeves algorithm, although its
initial search step size varied randomly for the four tests, the al-
gorithm could consistently find satisfactory optimal solutions



Fig. 10. Quality variability of the optimal solutions obtained by each algorithm in each test with different algorithm parameter settings.

Table 4
Initial solution used for each test.
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whose quality meets the required level of accuracy. Because the
Hooke-Jeeves algorithm, like the discrete Armijo gradient algo-
rithm, is a deterministic algorithm, it achieves a reliability of 100%
on each test. Thus, the search step size parameter of the Hooke-
Jeeves algorithm has nothing to do with its effectiveness or inef-
fectiveness when the quality of the initial solution is good.

As shown in Fig. 10, for the PSOCC algorithm, the quality of the
best solution found in each optimization run always failed to meet
the required accuracy level, regardless of the values of the algo-
rithm's convergence-related parameters (i.e., cognitive acceleration
and social acceleration) for the four tests. As a result, the reliability
of the PSOCC algorithm is 0 for the four tests, and the algorithm is
considered ineffective in these cases. At this point, although it is not
certain whether the cognitive acceleration and social acceleration
parameters will cause the PSOCC algorithm to be ineffective, it can
be concluded that the effectiveness of the PSOCC algorithm cannot
be improved by changing these two parameters' values.

Compared with the PSOCC algorithm, the PSOIW algorithm is
more effective. On Tests 1, 2 and 4, the algorithm successfully
searched for the optimal solutions that satisfy the desired accuracy
requirement in nine of ten repeated runs, and consequently, it
achieved a reliability of 90% for the three tests, which is acceptable
in this study. Moreover, on Test 3, the reliability of the PSOIW al-
gorithm was 100%, because the quality of the optimal solutions
obtained in ten repeated runs is good enough to satisfy the desired
accuracy level. Therefore, the performance of the PSOIW algorithm
is insensitive to the parameters of cognitive acceleration and social
acceleration, and the algorithm remains effective for different
values of the two parameters.
Design variables Initial value

Test 1 Test 2 Test 3 Test 4

x1 0.1 0.1 0.07 0.1
x2 60 90 150 180
x3 2 1.7 2.7 2.7
x4 2.7 2.6 1.4 2.7
x 5 2.5 2 1.9 2.7
x 6 2.3 1.35 2.1 2.7
x 7 18 15 12 10
5.3. Position of the initial solution in the design space

The position of the initial solution in the design space is another
possible factor that may cause the ineffectiveness of certain algo-
rithms. The representative optimization problem studied in this
paper is a multimodal problem. In addition to the global optimum,
several local optimal solutions exist in the design space, and these
may cause difficulty for the algorithms when attempting to
converge to the global optimum. As shown in Table 4, the perfor-
mance of the selected algorithms is assessed starting from four
different initial solutions. Specifically, the initial solutions used on
Test 1 and Test 2 are located in valleys with local optimal traps of
poor quality. In contrast, the initial solutions in Test 3 and Test 4 are
located far away from local optima. In particular, the initial solution
used in Test 3 is near the global optimal solution, and the one in Test
4 is located at the boundary of the design space. Note that the PSO
algorithms are population-based algorithms. To ensure the con-
sistency of the experiments, the initial solutions specified in Table 4
were artificially contained in the first generations of the PSO al-
gorithms for each test. Moreover, in all tests, the control parameters
of each algorithm are set to the values listed in Test 1 of Table 2,
which have been verified to perform well for the representative
optimization problem as shown in Fig. 10. Specifically, the param-
eter settings of the PSO algorithms listed in Test 1 of Table 2 are the
default values used in GenOpt.

The best solutions obtained by each algorithm in each test, as
well as the algorithm's reliability as calculated by Eq. (2), are
summarized in Table 5. Fig. 11 illustrates the quality variability of
optimal solutions found by each algorithm in each test. As shown,
the discrete Armijo gradient algorithm is effective on Test 3 (with a
reliability of 100%) but ineffective on Tests 1, 2 and 4 (with a reli-
ability of 0)deven though all of the optimization runs completed



Table 5
Optimal solutions obtained by each algorithm in each test.

Algorithms Tests Objective values (kW$h/m2$a) Reliability b (%)

Minimum Maximum Mean Standard Deviation

PSOCC Test 1 150.56 157.73 153.94 2.60 0
Test 2 150.75 157.78 154.06 2.53 0
Test 3 150.75 157.77 154.09 2.46 0
Test 4 150.16 157.68 153.83 2.61 0

PSOIW Test 1 144.22 145.38 144.58 0.42 100
Test 2 144.21 145.40 144.65 0.45 100
Test 3 144.27 147.61 145.05 1.01 90
Test 4 144.21 147.29 144.86 0.90 90

Discrete Armijo gradient Test 1 146.53 146.53 146.53 0 0
Test 2 146.09 146.09 146.09 0 0
Test 3 144.46 144.46 144.46 0 100
Test 4 149.43 149.43 149.43 0 0

Hooke-Jeeves Test 1 145.74 145.74 145.74 0 0
Test 2 145.74 145.74 145.74 0 0
Test 3 144.15 144.15 144.15 0 100
Test 4 144.15 144.15 144.15 0 100

Fig. 11. Quality variability of the optimal solutions obtained by each algorithm in each test with different initial solutions.

B. Si et al. / Renewable Energy 134 (2019) 1295e13061304
convergence successfully within the 300-simulations limit. In Test
1, in which the initial solution was located near a local optimum,
although the algorithm managed to escape the local optimum, it
still failed to find a solution that satisfied the desired accuracy level.
In Test 2, the discrete Armijo gradient algorithm became trapped by
the local optimum and failed to converge to the global optimum. In
Test 4, the algorithm failed to converge in the late search stage;
consequently, the quality of its optimal solution was far from the
required accuracy level. In contrast, the algorithm consistently
obtained satisfactory solutions for Test 3, in which the initial so-
lution was near the global optimum. Therefore, the initial solution
is an important factor in the effectiveness and efficiency of the
discrete Armijo gradient algorithm. Using a poor initial solution
(e.g., those near local optima or borders) can cause the algorithm to
fall into local optima traps and obstruct its convergence process.

Fig. 11 shows that the Hooke-Jeeves algorithm performs well on
Tests 3 and 4 when the initial solutions are far from local optima,
but poorly on Tests 1 and 2 when the initial solutions are located
near local optima. This outcome corresponds with the operational
strategy of the Hooke-Jeeves algorithm, which starts from the
initial solution and fine-tunes the optimization process to locate a
better solution.When the algorithm finds the best solutionwithin a
neighboring set of candidate solutions, it can easily mistake that
solution as the global optimum and, consequently, fail to explore
other portions of the design space. Therefore, the performance of
the Hooke-Jeeves algorithm is highly sensitive to the position of the
initial solution in the design space. Poor positions of the initial
solution (e.g., those located near local optima) may cause the al-
gorithm to be ineffective because it is vulnerable to local optima
and, finally, fails to find a satisfactory optimal solution.

As shown in Fig. 11, the PSOCC algorithm fails on the four tests
because the quality of the best solutions found by the algorithm in
each optimization run is far from the required accuracy level. As a
result, the reliability of the algorithm on the four tests is 0. Thus,



Table 6
Suggestions for the selected algorithms to avoid ineffectiveness.

Algorithms Algorithm control parameter settings Selection of the initial solution

Discrete Armijo
gradient

The alpha and beta parameters need to be set exactly while avoiding that both are set to a large value. The initial solution is best located near
the global optimum.

Hooke-Jeeves The search step size of the Hooke-Jeeves algorithm is not required to be exactly set as it has nothing to do with
the ineffectiveness of the algorithm.

The initial solution is best located far from
local optima.

PSOIW The cognitive acceleration and social acceleration parameters are not required to be exactly set as they have
little impact on the effectiveness of the algorithm.

There is no restriction on the selection of
the initial solution.

PSOCC The PSOCC algorithm is not recommended for BEO problems.
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regardless of where the initial solution is located in the design
space, the PSOCC algorithm is ineffective for the representative
optimization problem.

In contrast to the PSOCC algorithm, the PSOIW algorithm
consistently obtained satisfactory optimal solutions that met the
accuracy requirement within the given time limit with a reliability
of 100% for Tests 1 and 2 and 90% for Tests 3 and 4. Thus, the per-
formance of the PSOIW algorithm is independent of the initial so-
lution. Regardless of the location of the initial solutiondeven if it is
located near a local optimumdit will not cause the algorithm to
fail.
5.4. Suggestions for the selected algorithms to avoid ineffectiveness

After studying the ineffectiveness and possible causes of the
four selected optimization algorithms, some natural and mean-
ingful suggestions can be given for these algorithms to avoid inef-
fectiveness when they are used for BEO problems. As shown in
Table 6, these suggestions are provided from two perspectives:
algorithm control parameter settings and selection of the initial
solution.
6. Conclusions

Optimization algorithms play a critical role in determining the
effectiveness and efficiency of BEO techniques. An effective opti-
mization algorithm should simultaneously meet three criteria: (1)
deliver a satisfactory optimal solution, (2) complete the optimiza-
tion process within a given time constraint, and (3) achieve good
reliability. When an optimization algorithm violates any of these
three criteria, it is considered ineffective.

In BEO, an optimization algorithm is vulnerable to being inef-
fective when it exhibits one or more of the following symptoms: (1)
becoming trapped in local optima, (2) having insufficient search
speed, (3) failing to converge, (4) terminating before convergence
because of various errors, or (5) having poor reliability.

To investigate the causes of ineffectiveness, four commonly used
optimization algorithms were selected and applied to a represen-
tative BEO problem to perform numerical experiments. The results
demonstrate that the following causes led to the ineffectiveness of
these algorithms.

C The effectiveness of the discrete Armijo gradient algorithm is
dependent on its control parameters and the position of the
initial solution in the design space. Inappropriate settings of
the alpha and beta parameters can slow the search speed and
eventually cause the algorithm to fail to converge within the
predetermined time constraint. In addition, when the initial
solution is located far from the global optimum, the algo-
rithm requires more time to reach the global optimum,
which can result in ineffectiveness when the required time
exceeds the allotted time constraint. Specifically, when the
initial solution is located near local optima, it is difficult for
the algorithm to escape.

C For the Hooke-Jeeves algorithm, the position of the initial
solution in the design space is crucial to the effectiveness of
the algorithm because of its poor ability to escape from local
optima. Moreover, changing its search step size has no
impact on the effectiveness and efficiency of the algorithm.

C The PSOIW algorithm showed the best performance in all
tests. The two control parameters (i.e., cognitive acceleration
and social acceleration) and the position of the initial solu-
tion in the design space had little impact on the effectiveness
of the PSOIW algorithm.

C Unlike the PSOIW algorithm, the PSOCC algorithm was
ineffective for all tests: it never found a satisfactory optimal
solution, regardless of the algorithm's convergence-related
parameter settings (i.e., cognitive acceleration and social
acceleration) or the initial solution. Because the essential
difference between the PSOCC algorithm and the PSOIW al-
gorithm is the coefficient methods used to constrain the
search of a PSO algorithm, the constriction coefficient
method is not recommended for a PSO algorithm applied to
solve BEO problems.
7. Future study

One of the primary objectives of this study was to evaluate
whether different algorithm control parameter settings and
different initial solutions can cause the four studied algorithms to
be ineffective when used in BEO. Therefore, four sets of different
control parameter settings and four different initial solutions were
randomly chosen for each test. However, the best parameter set-
tings and the best initial solution for each algorithm are beyond the
scope of this paper and are therefore not provided. Such work is
valuable and will be pursued in future research.
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