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a b s t r a c t

Energy efficiency is a mandatory requirement and integral part of green and sustainable buildings. En-
ergy efficient design optimization is both a design philosophy and a practical technique that has been
proposed and used by architects and other professionals for several decades, especially in the past few
years. In this review, a set of selection criteria are proposed and 116 works are identified as the core
literature. Taking the perspective of architects, analysis is conducted to the core literature to reveal the
state of the art of building energy efficient design optimization. The analyzed subjects include the general
procedure, the origin and development, the classification, the design objectives and variables, the energy
simulation engines, the optimization algorithms, and the applications. The review findings confirm that
building energy efficient design optimization is a promising technique to design buildings with higher
energy efficiency and better overall performance. However, obstacles still exist and future research is
needed.
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1. Introduction

1.1. Background

After the two oil crisis in the 1970's [1], the energy cost sharply
rose, which led to a paradigm shift to a more energy efficient so-
ciety. Building energy efficient design started becoming main-
stream among government, developers, architects, engineers, and
other stake holders around the same time. This trend has been
ongoing for more than three decades and only recently strength-
ened by a more profound awareness of climate change and other
environmental challenges. One evidence among many is that a
variety of green building standards, adopted by many countries, all
have energy efficient design as an integral part with a heavy
weight, examples being LEED of the US [2], BREEAM of the UK [3],
and Green Building Label of China [4].

The emphasis on building energy efficiency would be merely a
design philosophy and thus could not be materialized if designers,
i.e., architects, mechanical engineers, lighting engineers, plumbing
engineers, and others have no suitable technique at their disposal.
Building energy simulation and its tools are developed to serve the
purpose of providing such technique to designers. It is a broad and
active research field. According to the Department of Energy of the
United States, there are more than 400 building energy simulation
models and/or programs available [5]. Some of them are powerful
programs that are widely recognized and used all over the world
and across disciplines such as EnergyPlus [6], TRNSYS [7], and
DOE-2 [8]. The building energy simulation technique has greatly
helped architects and engineers to achieve building energy effi-
cient design by offering capability to accurately and rapidly cal-
culate the loads and actual energy consumption of buildings.

Starting from the 1990 s and really gaining momentum since
2000, a new technique that combines building energy simulation
with optimization has emerged. New terms are given to this
technique such as “computational optimization” [9], “simulation-
based optimization” [10], “building performance optimization”
[11], “performance driven design” [12], etc. It should be pointed
out that the term “performance” covers a broader range than just
energy efficiency. Nevertheless, energy efficient design optimiza-
tion for buildings is clearly an emerging technique that is being
actively studied. The technique relies on optimization algorithms
to generate new designs based on simulation results and user-
defined design objectives. Compared with the conventional “trial-
and-error” design methodology guided by designers’ knowledge
and experience, this new technique is more efficient, more pow-
erful, and more likely to find the optimal or near-optimal design
solution. Post-processing methods such as Pareto frontier is often
called for to locate the optimal or near-optimal design solution
[13]. The building energy efficient design optimization technique
seems promising and yet is not free of limitations. Hence, it has
been becoming a very active research field as shown by several
important review works published lately [9,10,14].

Building energy efficient design requires a multi-disciplinary
design team. Architects and mechanical engineers are probably
the two professionals who take the most responsibility in
achieving an energy efficient building design. It can be reasonably
argued that between the two the architect carries more weight in
determining the final quality of the design in terms of the energy
performance for several reasons. First, the architect designs the
shape, space, and functions of a building, which are the most
fundamental aspects of a building design and the most important
features to the client. Furthermore, these aspects also greatly in-
fluence the energy performance of the design. Secondly, the ar-
chitect is responsible of making decisions on building envelope,
fenestration, and materials, which largely determine the heating
and cooling loads of the building. Therefore, as the leading pro-
fession in a design team, the architect should be familiar with the
latest development in the field of energy efficient building design.
However, the reality is far from being ideal. Many architects,
purposefully or not, tackles the energy efficient design with tra-
ditional, outdated, and inefficient techniques. They are not capable
of using energy simulation programs to assist their design, let
alone the design optimization technique that incorporates energy
simulation and optimization algorithms. Therefore, the role of ar-
chitects in building energy efficient design and their perspective
on the design optimization technique have been studied [14,15].

1.2. Objectives of this review

The primary objective of this paper is to conduct a compre-
hensive and in-depth review of the building energy efficient de-
sign optimization technique. The emphasis is placed on reviewing
and analyzing the state-of-the-art from the perspective of archi-
tects. The reasons why a review of such kind is both valuable and
timely are multi-folds. First and foremost, as the leading profes-
sion in a design team, architects often find themselves in an
awkward position when it comes to using the building energy
efficient design optimization technique. It is clear to them that the
conventional architectural design methodology, which in essence
is an approach involving design principles mainly based on func-
tions, forms, and spaces, would not suffice since building energy
efficient design requires scientifically rigorous energy simulation,
which most architects are not familiar with. The problem is further
exacerbated when optimization is added. After all, how would you
expect a traditionally trained architect to be familiar with opti-
mization algorithms and complex programs, let alone computer
coding which is required in many instances. This dilemma has
been realized by many such as Flager et al. [16]. Secondly, the
existing works in the field of building energy efficient design op-
timization cannot adequately address the needs of architects.
Many of the research works focus on developing the technique
and applying it to buildings. Few articles published discuss how
the existing technique fits into the overall workflow of an archi-
tectural design project and how architects view it. Building service
engineers and other professionals also play an important role in
designing and optimizing energy efficient buildings. They can
benefit from this review as well.

The objective of this review is to collect relevant literature in
accordance with a set of clearly defined criteria and then analyze
them to understand the evolution and current status of the
building energy efficient design optimization technique. An em-
phasis is placed on how the technique, while achieving the goal of
energy efficient design optimization, addresses particular needs of
architects. The analysis of the literature is performed to focus on:
(1) general procedure, (2) origin and development, (3) classifica-
tion, (4) optimization objectives and optimized design variable,
(5) energy simulation engineers, (6) optimization algorithms, and
(7) application. Note that some of these subjects are of interests to
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other building professionals too.

1.3. Scope of this review

This review is conducted based on collecting and analyzing
relevant works in the field of building energy efficient design
optimization. These works are referred as the “core literature”. The
following criteria are proposed to define the core literature.

� The literature must report research work that deals with
building energy related matters directly or indirectly. If a paper
discusses minimizing the cooling and heating energy con-
sumption, it is obviously qualified as dealing with building en-
ergy related matters. However, subjects such as CO2 emission,
thermal comfort, and life cycle cost are also qualified because
they are indirectly related to building energy. For instance, the
calculation of CO2 emissions and life cycle costs require the
knowledge of energy consumption.

� The research work must use one or multiple clearly defined
algorithms to optimize the design or the performance of the
building. Those works studying building energy efficient design
but not utilizing algorithms to drive the optimization process
are excluded.

� The literature must at least partially deal with the architectural
features of buildings such as building shape and form, building
envelope, building materials, etc. Research works that ex-
clusively study mechanical systems or energy systems are not
considered as the core literature. For example, if a paper only
discusses the design and optimization of a geothermal heat
pump system, it is excluded.

� Works that primarily focus on the comparison of optimization
algorithms are excluded despite that some of them meet the
above three criteria. It should be noted that the study of the
effectiveness and efficiency of optimization algorithms in
building energy efficient design is a valuable subject. Readers
can refer to Machairas et al. [14], Wetter and Wright [17,18],
Hamdy et al. [19], and Wright and Alajmi [20] for further
knowledge.

� Literature that was published before 1980 is excluded. There
may be pre-1980 literature that satisfy the above four criteria,
but they should be very few. In fact, the number of core lit-
erature did not show significant increase until 2000.

Based on the above selection criteria, a total of 116 works are
reviewed as the core literature [16,20,27–139]. The majority of
them are journal papers and conference proceeding papers.

1.4. Previous reviews

Several previous reviews that focus on performance-based
building design optimization or similar methods are available.
Fig. 1. General procedure of the building energ
Evins conducted a review on computational optimization methods
applied to sustainable building design [9]. Nguyen et al. reviewed
simulation-based optimization methods in building performance
analysis [10]. Machairas et al. took a different angle and reviewed
the algorithms used in performance-based building design opti-
mization [14]. Attia et al. reviewed the gaps and needs for in-
tegrating building performance optimization tools in net zero
building design [11]. These works are closely related to this review.
Nevertheless, the scope, the selection criteria of the core literature,
and especially the perspective of architects taken by the review are
different, new, and valuable.

Other review works that are broadly relevant to this review
include those focusing on building energy efficient design [21],
building energy simulation [22–24], and optimization techniques
in other engineering disciplines [25,26].
2. Analysis

2.1. General procedure

Although the building energy efficient design optimization
techniques found in the literature may vary in details, they typi-
cally follow a similar general procedure as illustrated in Fig. 1. The
general procedure shown in Fig. 1 consists of multiple steps, with
the ones operated by the designer marked in green and the ones
operated by the computer marked in pink. Two engines, namely
the optimization engine and the energy simulation engine, drive
the design process and function as the most critical components in
the procedure. The design and optimization process starts with a
design task, based on which an initial design is developed by the
designer, usually the architect. This initial design is imported into
the energy simulation engine to calculate the energy consumption
or other energy related variables. The designer needs to define a
single design objective or multiple design objectives. The com-
puter compares the energy simulation results with the design
objectives defined. If the design objectives are satisfied, the design
process will be terminated and the optimal design will be de-
termined. Otherwise, the design process calls for the optimization
engine to generate a new design and the above steps are iterated.

It is clear that in the general procedure shown in Fig. 1, the
optimization and energy simulation engines provide the main
force to drive the design and optimization process. Once the work
flow is set up and automated, the designer's task is reduced to
mainly two things. First, he needs to propose an initial design that
can be calculated for energy and input it into the work flow to start
the process. Secondly, he needs to define a single design objective
or multiple design objectives to guide the work flow. In essence,
the design objectives determine when to terminate the work flow
and when to continue. Ideally, after performing these two tasks,
the designer can simply let the process run until it finds the
y efficient design optimization technique.



Fig. 2. The number of the core literature in five periods: pre-2000, 2000–2005,
2006–2010, and 2011–2015.
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optimal or near-optimal design without his interference. Similar
procedures of the building energy efficient design optimization
technique are illustrated in Ref. [10,17,18,69]. They differ in pre-
sentations and some minor details but are essentially the same.

2.2. Origin and development

The first paper presenting a design and optimization study that
meets the five criteria established previously was published in
1983 [27], more than 30 years ago. D’Cruz et al. formulated a
Pareto optimization problem of determining the fenestration, in-
sulation, shape, massing, and orientation for thermal, daylight,
cost, and spatial efficiency design objectives of an air-conditioned
office building. Although no dynamic energy simulation or ad-
vanced optimization algorithm was employed, the technique de-
scribed in [27] generally follows the procedure depicted in Fig. 1.

Throughout the 1980s and 1990s, the research on building
energy efficient design optimization was not an active field as
evidenced by only 5 works occurring before 2000. The situation
made a sharp turn after 2000. More and more journal papers,
conference papers, and technical reports are published to study
the building energy efficient design optimization technique from
different angles. Fig. 2 illustrates the number of core literature
published in five periods, namely pre-2000, 2000–2005, 2006–
2010, and 2011–2015. As shown in Fig. 2, there is a clear upward
trend in the number of core literature published over time, espe-
cially in the past five years. This upward trend is caused by a
combination of several reasons. First and foremost, in the grand
scheme of green and sustainable movement, all stake holders in
the building industry, including architects, realize the importance
and necessity of designing buildings for higher energy efficiency.
This paradigm shift is probably the fundamental reason behind the
popularity of the building energy efficient design optimization
technique and other design techniques with similar natures. Sec-
ondly, the rapid development of building energy simulation makes
the technique easier to be implemented. As shown in Fig. 1, the
energy simulation engine is a key component of the technique.
Today, hundreds of building energy simulation programs are
available such as EnergyPlus [7], TRNSYS [8], etc. These building
energy simulation programs can be readily integrated into the
design process to achieve energy efficient design and optimization.
Last but not least, the exponentially increasing power and cap-
ability of computers enables architects and other professionals to
incorporate the building energy efficient design optimization
technique into their design practice. The technique requires fast
calculation especially when optimization is needed. Running a
complex design optimization on a slow computer is very time
consuming, which makes it impossible to be used since the design
practice is often time sensitive. Therefore, it is not surprising that
the number of publications on building energy efficient design and
optimization has been rapidly increasing, especially in the past five
years. Between 2011 and 2015, a total of 75 works are published,
averaging 13 publications per year.

2.3. Classification

Although the building energy efficient design optimization
techniques found in the core literature all share the same general
procedure shown in Fig. 1, they differ from each other in terms of
energy simulation engine, optimization algorithm, optimization
objective, optimized variables, etc. From an architect's perspective,
to examine how the design optimization is achieved is a sensible
and intuitive way to differentiate and classify them. On the other
hand, architectural design in essence is a problem solving process
and thus, requires creative thinking [140]. Since the 1950s, com-
puter-aided architectural design has become a major trend in the
field of architecture. Nowadays, architects rely heavily on a variety
of computer tools to assist them in design, examples being draft-
ing programs such as AutoCAD [141], modeling tools such as
Sketchup [142], simulation softwares such as Ecotect [143], etc.
Therefore, when encountering the building energy efficient design
optimization technique, architects tend to first look at what kind
of operating environment they need to use to perform such a
technique. Based on this thinking, the building energy efficient
design optimization techniques can be categorized into two
groups: (1) techniques that integrate energy simulation programs
into generic optimization platforms, (2) techniques integrating
energy simulation programs into special purpose optimization
platforms, (3) customized techniques.

2.3.1. Techniques integrating energy simulation programs into gen-
eric optimization platforms

It is obvious that the general procedure of the building energy
efficient design optimization technique illustrated in Fig. 1 needs
to realized in an integrated operating package. Otherwise the work
flow cannot be established or automated. One way to achieve it is
to integrate energy simulation programs into generic optimization
platforms that are commercially available. A generic design opti-
mization platform provides a user-friendly environment in which
designers can set up the design work flow, define optimization
objectives, choose optimization algorithms, link performance si-
mulation programs, and visualize optimization results. Such plat-
forms typically originate from a specific science or engineering
field and then gradually permeate into others. ModelCenter,
modeFRONTIER, GenOpt, and Matlab are four generic optimization
platforms that are successfully used in realizing building energy
efficiency design optimization.

ModelCenter and modeFRONTIER are two similar software so-
lutions in that they enable users to create model-based en-
gineering frameworks to perform simulation and optimization
[144,145]. Flager et al. reviewed several commercially available
PIDO (Process Integrated Design Optimization) software frame-
works and selected ModelCenter to optimize the energy perfor-
mance of a classroom building [16]. Lee et al. used modeFrontier as
the optimization platform to investigate the impact of varying
demand-side parameters such as thermal resistance of the roof
and wall insulation on the energy consumption for space con-
ditioning and lighting for a typical industrial hall [123]. A similar
study can be found in [107]. Shi selected modeFRONTIER as the
design optimization environment to find the best insulation
strategy to minimize the space conditioning load of an office
building while keeping the insulation usage at minimum [69].
Manzan and Pinto optimized the design of an external shading
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device in an office with a window and different glass character-
istics considering heating, cooling, and lighting energy consump-
tion using modeFRONTIER [57]. One advantage of modeFRONTIER,
the same for ModelCenter, is its vast selection of optimization al-
gorithms and its flexible connectivity to energy performance si-
mulations and post-processing tools [107,123].

Different from ModelCetner and modeFRONTIER, Matlab, de-
veloped by MathWorks, is a numerical computing environment
widely used by scientists and engineers across the world [146]. It
has found extensive applications in the field of building energy
efficient design optimization mainly because it offers optimization
algorithms via its toolbox and integration capability with simula-
tion programs. Petri et al. developed a modular optimization
model for reducing energy consumption in large scale buildings, in
which Matlab was used as a platform to find the best configuration
for Artificial Neutral Network (ANN) based optimization module
[117]. Asadi et al. combined the energy simulation program
TRNSYS with a Tchebycheff optimization algorithm developed in
Matlab to perform a multi-objective optimization task for building
retrofit [83]. Hamdy et al. introduced a multi-phase and simula-
tion-based method to find the cost-optimal and nearly-zero-en-
ergy building solution in accordance with European energy per-
formance of buildings directive (EPBD-recast 2010) [103]. In the
preparation phase, a single-objective deterministic algorithm
called Fmincon fromMatlab tool box was used. A related work was
conducted and both the genetic algorithm and FMINCON algo-
rithm in Matlab toolbox were called for [66]. Tresidder et al. used
the surrogate modeling routines offered in Matlab tool box to test
the performance of Kriging surrogate modeling optimization
techniques on a building design problem with discrete design
choices [92]. Evins conducted a building solar gain optimization
assisted by the genetic algorithm in Matlab toolbox [64]. Taheri
et al. calibrated the thermal simulation model for an existing
university building [102]. In this case, Matlab was used to in-
corporate the values of time-varying input parameters into the
thermal model rather than to achieve optimization. Other works in
the core literature that achieve the building energy efficient design
optimization technique via Matlab include [60,63,72,85,87,99,101,
112,127–129,133–135,137].

GenOpt is another generic optimization platform that is ex-
tensively used to achieve energy efficient design optimization for
buildings. GenOpt, developed by the Lawrence Berkely National
Laboratory of the US, is an optimization program for the mini-
mization of a cost function that is evaluated by an external simu-
lation program [147]. Taheri et al. selected GenOpt and used the
hybrid generalized pattern search with particle swarm optimization
algorithm to arrived at a calibrated simulation model of an existing
university building [102]. Palonen et al. used GenOpt to optimize
the life cycle cost of a detached house [61]. Asadi et al. combined
GenOpt with Matlab to find the optimal solution for building ret-
rofit strategies [83]. Carlucci et al. developed an optimization pro-
cedure to support the design of a comfort-optimized net zero en-
ergy in GenOpt [104]. Salminen et al. combined energy simulation
with GenOpt to optimize the energy and economic performances of
a two-story LEED certified building [82]. Karaguzel et al. used
GenOpt to minimize the life cycle material cost and operational
energy consumption of a commercial office building [121]. Hamdy
et. al. compared three optimization algorithms in finding the cost-
optimal and nearly-zero-energy solutions for a problem that has a
large discrete solution-space with a modified version of GenOpt
[91]. Zhou et al. developed an optimization module in EnergyPlus
and benchmarked its performance against GenOpt [39]. Hasan et al.
coupled a building performance simulation program with GenOpt
to find optimized values of five selected design variables in the
building construction and HVAC system [55]. Djuric et al. integrated
EnergyPlus into GenOpt to optimize the thermal comfort and total
costs of a school building [50]. Other works in the core literature
that achieve building energy efficient design optimization via
GenOpt include [42,58,65,78,86,88,109,110,115,122].

2.3.2. Techniques integrating energy simulation programs into spe-
cial purpose optimization platforms

The aforementioned ModeCenter, modeFRONTIER, Matlab, and
GenOpt are all generic optimization platforms in that they can be
linked with various simulation programs and perform design op-
timization for tasks that are not associated with building energy
efficiency. On the contrary, jEPlusþEA is developed solely for
carrying out building energy efficient design optimization. It is in
essence a Java shell to perform parametric study and optimization
with EnergyPlus and a modified non-sorting genetic algorithm.
Tresidder et al. used jEPlusþEA to benchmark the performance of
Kriging optimization [92] and surrogate modeling optimization
[75]. Carreras et al. presented a methodology for determining the
optimal insulation thickness for external building surfaces using
jEPlusþEA [139]. Naboni et al. conducted design optimization for a
nearly zero-energy prototype building with jEPlusþEA [105].

In two papers [114,130], Grasshopper, a graphical algorithm
editor tightly integrated with Rhino's 3-D modeling tools, is used
to link energy simulation programs, EnergyPlus in both cases, with
optimization algorithms and conduct design optimization. Other
special purpose optimization platforms found in the core literature
include MOBO [111], ENEROPT [59], GENE_ARCH [49,74].

2.3.3. Customized techniques
The building energy efficient design optimization technique

does not have to rely on commercially available optimization
programs. One can write his own computer program to integrate
energy simulation with optimization algorithms. In the core lit-
erature, the examples of such customized techniques are not rare.
The customized design optimization can be written in Fortran
[28,32,45], Cþþ [46,117,132], Visual Basic in Microsoft Excel [96].

2.3.4. Pros and cons of the three categories of the building energy
efficient design optimization technique

The aforementioned three categories of the building energy
efficient design optimization techniques have their pros and cons.
The first category, which integrates energy simulation programs
into generic optimization platforms, is probably the most powerful
one in terms of optimization process and algorithms and post-
processing capabilities. The generic optimization platforms such as
ModelCenter, modeFRONTIER, etc. offer a variety of optimization
algorithms and a graphical, user-friendly interface to establish the
design optimization workflow. The post-processing capabilities are
strong in that the designer can view, analyze, and compare the
optimization results in various ways. The cons are mainly about
the challenge of integrating energy simulation programs into the
generic optimization platforms. Some computer coding, usually
not much, may be needed [69]. The second category of the tech-
nique, which integrates energy simulation programs into special
purpose optimization platforms, does not offer nearly as many
optimization algorithms as the first one. However, like jEPlusþEA,
the energy simulation programs can be conveniently integrated
and therefore, very little computer coding is needed. The last ca-
tegory of customized techniques is the most technically challen-
ging one in that a significant amount of computer coding is re-
quired to establish the design optimization procedure and realize
optimization algorithms. Its cons are obvious too. The user can
have full control over the entire process of the design optimization
and therefore, is able to make adjustments as he wishes.

It needs to be stated that some works in the core literature do
not identify what technique they use to achieve the building en-
ergy efficient design optimization. Fig. 3 compares the number and
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percentage of each category of technique. Note that GenOpt and
Matlab are counted separately because they are the two most of-
ten used optimization platforms.

2.4. Optimization objectives and optimized design variables

2.4.1. Optimization objectives
Since the subject of this review is on building energy efficient

design optimization, the optimization objectives of all of the core
literature are building energy related. However, they are in dif-
ferent forms. The optimization objectives can be explicitly on en-
ergy such as minimizing annual energy consumption
[20,29,38,72,129,134]. The energy-related parameters being mini-
mized can have slight variations while still explicitly on energy.
For example, life cycle energy consumption, instead of annual
energy consumption, is found in the core literature to be the op-
timization objective [95]. Besides the actual energy consumption,
space condition load, i.e., heating and/or cooling load, is another
optimization objective [69,79,99,109,131]. Although the space
conditioning load is not equal to the actual energy consumption,
they are closely related and describe the energy performance of a
building in different ways.

Minimizing the energy consumption or space conditioning load
of a building is obviously energy related objective. Other optimi-
zation objectives can be implicitly energy related such as mini-
mizing CO2 emissions [68,70,75,85–87,92,96,120,133]. A typical
way is to calculate or simulate building energy consumption first
and then convert it to the amount of CO2 emitted. Other implicitly
energy related optimization objectives include reducing energy
cost [30,33,76,96] and life cycle cost [40,47,55,89,106,132]. Among
the core literature, approximately 67% of them have explicitly
energy related optimization objectives while the rest are implicitly
energy related. Note that minimizing costs in different forms and
reducing CO2 emissions are two commonly considered optimiza-
tion objectives, accounting for approximately 52% and 14% of the
core literature, respectively.

In addition to energy related optimization objectives, many
reviewed works are multi-objective optimization studies. There-
fore, the optimization objectives are diversified. Some examples
are maximizing thermal comfort [65,81,83,136], minimizing dis-
comfort hours [104,115], maximizing lighting quality [126,135],
improving visual comfort [93], and zone mean air temperature
[102].

2.4.2. Optimized design variables
To achieve energy efficient building design, many design vari-

ables need to be considered and optimized as demonstrated by the
core literature. For the sake of this review, these design variables
are categorized into 5 categories, namely opaque building envel-
ope, transparent building envelope, shape and form, type of me-
chanical systems, and operation of mechanical systems.
The most common example of opaque building envelope vari-
ables is the overall thermal conductance (the U-value) of exterior
walls [32,82,84,94,121] or its equivalents such as the thickness of
insulation [55,58,103,106] or non-insulation wall components
[65], the insulation type [73,83,87,89,119], the thermal resistance
of exterior walls [97]. In addition to the thermal properties of
external walls, the thermal properties of roofs and floors are also
variables that can be optimized [135,136].

Design variables related to transparent building envelope in-
clude glazing, window size, window shading, etc. Some of these
variables can take different but closely linked forms. Glazing types
include single pane [134], double pane [76,124,134], and even
expensive triple pane [76] with high performance. It is common
that the glazing type is represented by the U-value of the glazing
[29,42,58,72,136], which is the actually optimized variable anyway.
Window size is another important design variable for transparent
building envelope [16,20,42,48,84]. It is equivalent to the window-
to-wall ratio when the size of the wall is a fixed number
[29,76,85,86,124,133,135]. Window shading prevents solar radia-
tion from transmitting into the building through the window and
therefore, can effectively reduce the cooling load. Window shading
can be fixed and non-adjustable overhang [105,114,126,132], ad-
justable blinds [126,127] or other types of shading device [53].
Glazing, window size or window-to-wall ratio, and shading are the
most commonly optimized and transparent building envelope
related variables that are found in the core literature. Other opti-
mized variables include the solar heat gain coefficient (SHGC) of
windows [131,132], glazing light transmission [132], and others.

The shape and form of buildings are of great interest to archi-
tects. In fact, they are the primary design variables that architects
consider and study in the early design stage and throughout the
entire design process. Hence, it is no coincidence that some works
in the core literature attempt to optimize the shape and form of
buildings to achieve energy efficiency. However, shape and form
are different from other design considerations such as the thermal
performance of external walls in that describing shape and form
with one variable is difficult. To fully define the shape and form of
a rectangular box building with simple interior space structure
would typically require more than ten variables, let alone complex
buildings such as large scale office buildings, shopping malls,
museums, etc. When a non-linear complex shape is present, it is
difficult to mathematically describe it, not to mention optimize it
to satisfy the objective of being energy efficient. Therefore, the
variables related to shape and form found in the core literature are
relatively simple. Orientation, which can be quantified using the
angle between the axis of the building floor plan and one of the
four directions, is a common shape and form related design vari-
able optimized [16,28,29,35–37,40,45–47,88,90,106,108,110,113,
124,131,136]. If the building floor plan is rectangular, its aspect
ratio, i.e., the ratio between the length and the width of the floor
plan, is another commonly optimized shape and form related
design variable [27,28,31,40,45–47,48,76,125,131].

Orientation and aspect ratio are the two most commonly op-
timized design variables related to shape and form for obvious
reasons. They are easily quantifiable and thus, can be conveniently
input into the energy simulation engine and the algorithm for
optimization. They are also the most fundamental design variables
to define the shape and form of a building. Since the aspect ratio
only applies to rectangular shape floor plans, its application is
somewhat limited when the architect desires more flexibility.
Research works that attempt to explore more plan shapes are
available. Bichiou and Krarti developed an energy simulation en-
vironment to optimally select both building envelope features and
heating and air conditioning system design and operation settings
[76]. Several different floor shapes are considered in the optimi-
zation simulation environment, namely rectangular, trapezoid,
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L-shape, U-shape, T-shape, cross-shape, and H-shape. Another
study related to [76] can be found in [63]. Adamski analyzed the
possibility of optimizing an abstract and symmetrical ovaL-shaped
building with constant volume and height [52]. Caldas in-
corporated the shape grammar of Islamic patio house typology
and generated new, alternative patio house designs with better
energy performance while respecting the traditional rules cap-
tured from the analysis of existing houses [74]. Ullrich et al., in-
spired by the London City Hall designed by Norman Foster, pre-
sented an “Office Building” energy efficient design optimization
example, in which the building floor takes the form of an ellipsoid
and the principal axes ratio and five disc-scaling factors are design
variables optimized [108]. Wang et al. presented a methodology to
optimize building plan shapes represented by a multi-sided
polygon [47]. Yi and Malkawi pointed out that most current re-
search using optimization with building performance was re-
stricted to simple geometry and that it considered the building
form as a box, polygonal shape, or simple curvature, restricting its
applicability and integration with the design process [60]. They
introduced a new method to control building forms by defining
hierarchical relationship between geometry points to allow the
user to explore the building geometry without being restricted to a
box or simple form. The optimized shapes and forms are quite
complex in that their plan, elevation, and even the general shape
all vary to different extents.

Since this review looks into the building energy efficient design
optimization technique particularly from the perspective of ar-
chitects, mechanical system related design variables are loosely
grouped into two categories, namely the type of mechanical sys-
tems and the control of mechanical systems. The type of me-
chanical systems include heating and cooling source
[33,48,68,76,84,90,91,94,101,103,121,134,137], pumps and fans
[33,94,96], heating and cooling efficiency [94,96,134,135], heat
recovery [31,55,68,91,94,101,103,137], heating and cooling dis-
tribution [101], photovoltaic system [31,84,91,94,96,98,101,
107,113], solar thermal system [31,48,83,84,87,96,101], lighting
[31,58,72,90,96,135], energy storage [31], etc. The control of me-
chanical systems includes heating and cooling setpoints
[20,44,65,66,33,76,90,117,124,134], ventilation strategy [66,79,
82,101,129,135], lighting control [31,58,82,90,94], etc. These de-
sign variables affect the energy efficient performance in different
ways and with different agrees. They are typically the responsi-
bility of mechanical engineers. Architects do not directly design
these variables.

2.5. Energy simulation engines

As shown in Fig. 1, the energy simulation engine is a key
component in the building energy efficient design optimization
workflow. Its function is to calculate the energy consumption or
other energy related parameters of the building being designed
and optimized. The calculation results are then compared with the
pre-defined design objectives. If the pre-defined design objectives
are met, the design and optimization process will be terminated.
Otherwise, the optimization algorithm will be called for to pro-
duce a new set of design variables and the process will be iterated.
It is clear that without the energy simulation engine the design
and optimization workflow shown in Fig. 1 cannot be im-
plemented. In addition, the energy simulation engine determines,
to a large extent, the overall efficiency of the design and optimi-
zation process. Since the energy simulation engine is called for
many times in the workflow, its speed has a significant impact on
the overall efficiency of the entire process. If the energy simulation
engine is to perform a dynamic, detailed, and complex building
energy calculation, the time needed to complete the design opti-
mization process and locate the optimal design can be significant.
On the contrary, if the energy simulation engine is a simplified
model with a few straight forward equations, the calculation speed
can be fairly rapid and the time needed to complete the design and
optimization process can be relatively short.

Among 116 works in the core literature, EnergyPlus is by far the
most commonly used energy simulation engine, accounting for 47
works or 40.5% of the core literature [16,20,39,42–44,50,56,60,
64,67,69–71,72,75,81,84–86,88,89,92,93,100,102,104,105,110,113–
115,117,118,120,122,124,125,129,130,132–136,138,139]. EnergyPlus
is a representative of the category of detailed and dynamic energy
simulation programs. Other energy simulation engines found in
the core literature that falls into this category are DOE-2
[38,49,63,76,90], TRNSYS [48,65,73,83,99,107,109,123,131,139],
ESP-r [57,77,126], and IDA ICE [55,61,66,68,78,82,91]. Fig. 4 com-
pares the number of core literature that use these five dynamic
energy simulation programs.

The main advantage of using detailed and dynamic energy si-
mulation engines such as EnergyPlus is obvious, i.e., they are
capable of simulating the energy consumption or other energy
related parameters with accuracy and reliability. Another ad-
vantage is that most of these dynamic energy simulation programs
have been developed for more than 10 years and tested ex-
tensively and applied on various projects. Therefore, the input and
output functions of these programs are fairly complete. This trait is
particularly important for energy efficient design optimization in
that the energy simulation engine needs to be incorporated into
the design optimization workflow as shown in Fig. 1, which means
that the input and output modules of the energy simulation pro-
gram need to be linked with other programs such as the optimi-
zation platform. Therefore, the user would find it convenient if the
input and output functions of the energy simulation program are
easy to find and decode.

Despite having the aforementioned advantages, detailed and
dynamic energy simulation programs, when used in energy effi-
cient design optimization, can cause long running time. This is
probably the main reason some researchers attempt to utilize
simplified energy simulation models to achieve energy efficient
design optimization. In addition, a full-blown energy simulation
may not be necessary, especially in the early design stage. ASHRAE
(American Society of Heating, Refrigeration, and Air-conditioning
Engineers) toolkit for building load calculation is an example of
such simplified models [40,46,47]. Some works follow standard or
code-recommended energy calculation methods and code them
into the optimization workflow. Simons et al. coded the normative
energy calculation approach defined by ISO (International Stan-
dardization Organization) 13,970 into an Microsoft Excel spread-
sheet [101]. Shao et al. followed the German standard DIN V
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18,599 and implemented the energy simulation module in Visual
Basic for Microsoft Excel and used it to calculate various energy
performance indicators beside annual operational energy con-
sumption [119]. Han et al. adopted the BIN (or temperature fre-
quency) method recommended by ASHRAE for its speed and
convenience [112]. Evins et al. performed a multi-objective opti-
mization for regulated carbon emissions versus capital and run-
ning costs using the heat balance model underlying the Standard
Assessment Procedure of the UK [96]. It is stated that the model is
reasonably comprehensive, but sufficiently simple (and hence
quick to run) to allow extensive optimization. Gengembrea et. al.
used a building thermal model called R5C1, which is a global
normalized model in the French thermal regulation frame in order
to assess the energy consumption of buildings [97]. Murray et al.
coupled a static simulation modeling method (degree-days) out-
lined in CIBSE (Chartered Institution of Building Service Engineers)
Guide TM41 with the genetic algorithms optimization technique
and applied it to the retrofitting of existing buildings [121].

Non-standard, customized energy calculation models are also
found in the core literature. These models vary significantly in
complexity and completeness. It can be a whole building energy
simulation program that estimates the annual energy performance
of buildings, including daylighting, demand charges, life cycle
costs, and floating temperatures in unconditioned zones [45] or a
very basic model which can be described using several simplified
equations [27,28,98,103]. The Admittance Procedure, which adopts
the concept of thermal admittance to describe the thermal re-
sponse of the building opaque components in dynamic conditions,
is found to be used in two cases [99,128]. Advantages of these
customized energy simulation models are that the energy simu-
lation procedure can be fully comprehended and that the custo-
mer written simulation programs can be easily integrated into the
design optimization workflow since all codes are available for
manipulation. However, the accuracy and reliability of these cus-
tomized energy simulation models will inevitably be asked. The
question leads to a concern that using them may not be able to
find the optimal design as accurately and effectively as using the
standard dynamic energy simulation programs such as EnergyPlus.
Our literature review does not find adequate research to address
this concern, which hence remains to be a subject that warrants
future study. Table 1 summarizes the advantages and dis-
advantages of the three types of energy simulation engines used in
the building energy efficient design and optimization technique.

2.6. Optimization algorithms

The optimization algorithms, as shown in Fig. 1, is a critical part
in the building energy efficient design and optimization workflow.
It generates new designs, based on the predefined design objec-
tives and the energy simulation results. Therefore, its performance
is vital for the overall effectiveness and efficiency of the design
optimization technique. Reviews that focus on the optimization
Table 1
Advantages and disadvantages of the three types of energy simulation engines used in

Types Examples Advantage

Dynamic and detailed energy
simulation engines

EnergyPlus, DOE-2, TRNSYS, ESP-r, IDA
ICE, etc.

High accur
output fun
optimizati

Simplified standard energy
simulation models

ASHRAE toolkit for building load calcula-
tion, ISO normative building energy cal-
culation approach, etc.

Fast runnin
stage

Customized non-standard
energy calculation models

Admittance procedure, etc. Fast runnin
calculation
algorithms in performance-based building design optimization are
available [14].

From a perspective of architects, the optimization algorithm is
probably the least familiar one among all components illustrated
in Fig. 1. It reflects the inter-disciplinary nature of the field in that
optimization algorithms are typically a research subject in com-
puter science and mathematics. Their introduction into the field of
architecture is relatively new. Furthermore, the classic curriculum
or training of architects does not contain knowledge of optimiza-
tion algorithms. Such knowledge can only be found on the frontier
of architectural research [148] including the building energy effi-
cient design optimization technique this review discusses.

The commonly used algorithms in building energy efficient
design optimization can be grouped into three categories, namely
evolutionary algorithms, derivative-free search algorithms, and
hybrid algorithms [148]. Note that hybrid algorithms are not new
algorithms. They are combinations of different algorithms, often
evolutionary algorithms with derivative-free algorithms. A statis-
tical analysis of the core literature shows that evolutionary algo-
rithms are the most commonly used category of optimization al-
gorithms, accounting for approximately 60%. The rest are deriva-
tive-free search algorithms such as Hooke-Jeeves direct search
algorithm [42] and hybrid algorithms. In the category of evolu-
tionary algorithms, genetic algorithm (GA) [20,33,38,48,51,
56,58,60,62,64,66,69,72,74,75,84,105,107,108,116,121,134] or its
variations such as non-dominant sorting genetic algorithm
(NSGA) [67,73,77,82,85,92,103,117–119,124,131,133,136,137,139]
are dominant. A general trend to shift from normal GA to NSGA is
noted, probably because NSGA is more suitable to solve multi-
objective optimization problems, which are common in archi-
tectural design. Particle swarm algorithm is another frequently
used evolutionary algorithm [63,76,79,86,104,122].

Although most literature apply algorithms to building energy
efficient design optimization without looking much into the al-
gorithm itself, several studies shed light on how effective and ef-
ficient different algorithms are in finding the optimal design so-
lution. Wetter and Wright compared Hooke-Jeeves direct search
algorithm with genetic algorithm and concluded that the latter
performs better than the former and that Hooke-Jeeves direct
search algorithm can be trapped in local optimum [17]. Wetter and
Wright compared the performance of eight algorithms, namely
coordinate search algorithm, HJ (Hooke-Jeeves) algorithm, PSO
(Particle Swarm Optimization) algorithm, PSO that searches on a
mesh, hybrid PSO-HJ algorithm, simple GA, Simplex algorithm of
Nelder and Mead, and Discrete Armijo gradient algorithm, for their
performance in minimizing cost functions with different
smoothness [18]. They found that the hybrid algorithm achieved
the biggest cost reduction with a higher number of simulations
and that the simple GA consistently got close to the best mini-
mum. However, the performances of other algorithms were not
stable. It is recommended that Simplex algorithm and Discrete
Armijo gradient algorithm should be avoided if EnergyPlus is used
the building energy efficient design and optimization technique.

s Disadvantages

acy and reliability, complete input and
ctions, convenient integration into the
on workflow

Long running time

g speed, suitable for the early design Not very high (but often acceptable)
accuracy and reliability

g speed, full control of the energy
model

Difficult to evaluate accuracy and relia-
bility, non-standard and thus not
transferrable
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to evaluate the cost function. Kämpf et al. compared the perfor-
mance of two hybrid algorithms, PSO-HJ and CMAES/HDE (Cov-
ariance Matrix Adaption Evolution Strategy/Hybrid Differential
Evolution), in optimizing five standard benchmark functions with
different complexities [149]. They found that the CMAES/HDE
outperformed the PSO-HJ in solving the benchmark functions with
ten dimensions or less. However, when the number of dimensions
was larger than 10, the PSO-HJ algorithm performed better. Wright
and Ajlami examined the effect of starting conditions or control
parameters on the robustness of the GA [20]. They concluded that
there was no significant difference in solutions found between any
of the parameter sets and that the GA was insensitive to the choice
of the control parameters. Hamdy et al. tested the performance of
three multi-objective algorithms (NSGA-II, aNSGA-II, pNSGA-II) on
a building optimization problem and two benchmark test pro-
blems [91]. The aNSGA-II algorithm found high-quality solutions
close to the true Pareto front with fewer evaluations and faster
convergence. Elbeltagi et al. compared the performance of five
evolutionary optimization algorithms, namely GA, memetic algo-
rithm, PSO, ant-colony system, and shuffled frog leaping, in solving
continuous and discrete benchmark functions [150]. They found
that the behavior of each optimization algorithm in all test pro-
blems was consistent and that the PSO algorithm generally per-
formed better than the others in terms of success rate and solution
quality, while being second best in terms of processing time.

2.7. Application of the energy efficient design optimization technique
on buildings

The ultimate objective of carrying out research on building
energy efficient design optimization is to provide an innovative
and more powerful means to achieve buildings with a better
overall performance with a particular focus on energy. Therefore,
it is imperative that the application of the technique on buildings
is reviewed.

The first focal point of the review is to examine whether the
energy efficient design optimization technique is applied to a real-
world building or a simplified and fictitious building. It is believed
that the finding coming out of this examination can indicate, to a
reasonable degree, the maturity of the technique and its current
status in design practice. Statistical analysis shows that among 116
works in the core literature, 32 of them apply the technique on
real-world buildings, accounting for 27.6%, compared with 77 on
simplified and fictitious buildings, accounting for 66.4%. The rest
are 7 works that did not apply the technique on case buildings.
Fig. 5 illustrates the composition of the core literature in terms of
the different kinds of the case building. As Fig. 5 shows, the pro-
portion of applying the energy efficient design optimization
technique on real-world buildings is just over one quarter, a fairly
low number indicating that the technique is relatively new and
has not been widely adopted in building design practice. This
finding is further supported by the data that almost 70% of the
works reviewed apply the technique on simplified and fictitious
buildings. Although valuable, these case studies cannot fully ad-
dress the complex nature and challenges that designing a real-
world building intrinsically has.

Despite that only a small percentage of literature reviewed use
the energy efficient design optimization technique on real-world
buildings, some of them are worth mentioning because they use
relatively large scale and complex buildings to demonstrate the
procedure, effectiveness, and capability of the technique. Jin and
Overend applied a recently developed whole-life value based fa-
çade design and optimization tool on a real-world façade re-
novation project. The case building was constructed in 1945. It is a
five-story steel-framed building with reinforced concrete floors,
which holds part of the Department of Engineering, University of
Cambridge, the UK [85]. According to the figures included in [85],
the building's floor area is close to 5000 m2. Eisenhower et al.
proposed a meta-model based building energy efficient design
optimization methodology and applied it on the Atlantic Fleet Drill
Hall (building 7230) at the Naval Station Great Lakes in Great
Lakes, Illinois, the US. It is a two-storey facility with a gymnasium-
like drill deck as well as a section primarily comprised of offices.
The total area of the building is approximately 6430 m2 [81].
Stojiljkovi et al. assessed greenhouse gas emissions in residential
sector using the energy efficient design optimization technique.
The case study is an urban residential settlement with multifamily
buildings located in Niš, Serbia, with a total heated area of
27,045 m2 [138].

In all case studies, residential buildings, office buildings, and
educational buildings are the three most common types of
buildings in terms of function, with 28, 27, and 7 cases, respec-
tively. This finding is no surprising since residential and office
buildings are probably the most commonly seen building types in
general building stock. Other building types include retail [133],
healthcare [44], industrial [103,123], hotel [84], religious [59], and
sports [117].

Another revealing finding by analyzing the core literature is
that among real-world buildings the majority of cases are re-
novation, 19 cases, rather than newly built, only 3 cases. The
number of renovation projects is overwhelming for two possible
reasons. First, the actual need for renovating existing buildings to
improve the energy performance and achieve a low carbon society
is high, especially in countries that have already gone through the
urbanization stage and have a high percentage of existing building
stock compared with newly built buildings. Secondly, for renova-
tion projects the shape and form of the building are fixed.
Therefore, the attention can be put on renovating building envel-
ope and mechanical systems. This makes applying the application
of the energy efficient design optimization technique somewhat
easier.
3. Discussions

3.1. The overall state of the building energy efficient design optimi-
zation technique

Encouraged by the overall movement of green and sustainable
buildings and assisted by the technological advancements such as
energy simulation, building energy efficient design optimization is
quickly becoming a new and promising technique to design
buildings with higher energy efficiency and better overall perfor-
mance. This trend is confirmed by a steady increase of the number
of relevant literature, especially since 2011 (Fig. 2).

Building energy efficient design is intrinsically a multi-objec-
tive and multi-variable design task. The conventional trial-and-
error design method or other methods relying on the designer's
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knowledge and experience can be inefficient or even ineffective
when the building and the design task are complex. From a per-
spective of architects, the conventional architectural design
method is an approach involving some basic design principles,
mainly based on functions and forms. The driving force is the
combination of the architect's rationality and sensibility [151].
Building energy efficient design is performance driven. In other
words, the driving force for design generation and evolution
should be quantifiable performance index, i.e., energy related
performance parameters. Therefore, combining energy simulation
with optimization algorithm is a natural means to deal with the
challenges that the conventional design method cannot overcome,
namely a rapid and accurate calculation of energy performance
and a systematically guided search for the optimal solution in a
large design space.

To achieve energy efficient design optimization for buildings,
the first task is to develop a technique that can establish an au-
tomated workflow as shown in Fig. 1. This is one of the research
areas that is fruitful. Various tools, software packages, and com-
puter coding languages are used independently or together to
realize the building energy efficient design optimization techni-
que. Therefore, it is now possible for an architect to find such a
technique that he feels comfortable with and use it to design an
energy efficient building.

Besides the effort to develop the techniques, other research
areas in building energy efficient design optimization are also
explored with different depths. Studying the performance of al-
gorithms is one of them. Some generally accepted findings are
available such as the ability of evolution-based algorithms to find
the optimum for non-linear problems and the effectiveness of
combining evolution-based algorithms with direct search algo-
rithms. Despite the progress, some key research issues regarding
algorithms remain unresolved. For instance, building energy effi-
cient design optimization problems have different natures such as
linear versus non-linear, continuous versus discrete, etc. Evaluat-
ing a certain algorithm must take into account its performance on
design optimization problems with different natures. The other
important research task is to develop a system of performance
indices to evaluate the effectiveness and efficiency of algorithms.
These performance indices may include the ability to avoid being
trapped in local minimum, the speed to find the near-optimum,
robustness, stability, etc.

The other key component in Fig. 1 is the energy simulation
engine. The building energy efficient design optimization techni-
que is quite mature in this regard, thanks to the latest develop-
ment of dynamic building energy simulation programs. EnergyPlus
is the clear favorite for researchers. Other software packages such
as TRNSYS, ESP-r, DOE-2, and IDA ICE are equally suitable to be
integrated into the design optimization workflow as the energy
simulation engine. It should be noted that being open-source is a
major advantage because the workflow shown in Fig. 1 requires
information exchange among the energy simulation engine, the
optimization engine, and possibly other components.

3.2. What is missing for architects

Generally speaking, architects are not the inventor or developer
of the building energy efficient design optimization technique, but
the end-user. They do not and should not concern themselves with
technical details of the design optimization approach. Aspects
such as the overall capability, the user interface, post-processing,
and integration with architectural modeling programs are what
architects focus on and use to evaluate the effectiveness and effi-
ciency of the building energy efficient design optimization
technique.

Although the current state of building energy efficient design
optimization, both as a design philosophy and technique, is en-
couraging, there are still missing pieces for architects. These
missing pieces warrant future research. First and foremost, rea-
lizing building energy efficient design optimization requires soft-
ware packages or skills that most architects are not familiar with.
As discussed previously, generic optimization platforms such as
Matlab, modeFrontier, GenOpt, etc. can be used to integrate energy
simulation programs and establish the building energy efficient
design optimization technique. However, all of these optimization
platforms are not developed to address the special needs of ar-
chitectural design. Therefore, their user interface and operating
style are somewhat strange for architects. More importantly, they
cannot be smoothly connected with the architectural modeling
programs such as Google Sketchup. This is a significant challenge
because architects rely on modeling programs to generate and
modify the design, especially in the early design stage. To achieve
design optimization, they now have to switch between the mod-
eling environment and the optimization environment, which is
inconvenient and susceptible to mistakes.

Another missing piece is that the design optimization technique
is capable of dealing with design variables such as the thermal re-
sistance of the wall system, the U-value of the windows, etc.
However, when it comes to the shape and form of buildings, only
very basic variables such as the aspect ratio of a rectangular shape
floor plan can be successfully optimized. In reality, shape and form
related design variables can be much more complex. As discussed
previously, this limit is probably part of the reasonwhy the majority
of case buildings that the energy efficient design optimization
technique is applied on are renovation rather than newly built be-
cause the shape and form are determined for renovation projects.

Post-processing capability in building energy efficient design
optimization also limits the technique's usefulness in architectural
design practice. The optimization results for single objective pro-
blems are easy to interpret. For multi-objective problems, the
optimization results are often processed using methods such as
the Pareto frontier methods. Although these methods are mathe-
matically sound, it can be difficult to interpret them in an actual
building design task.

3.3. Future work

Most, if not all, new technologies share the same pattern of
development. They are first proposed as a new idea and developed
to solve particular problems. Then they are put into use, whereby
gaps between the technology and what is needed is identified. The
technology is improved to address those gaps until it becomes
mature. The building energy efficient design optimization technique
follows the same pattern. There are still gaps that warrant future
research work. The followings describe several important ones.

Develop more integrated design optimization software packages
that can fit into the overall design workflow that architects are fa-
miliar with. A typical architectural design workflow starts from
conceptual design, to detailed design, and to construction drawing
design [69]. An integrated energy efficient design optimization soft-
ware package should fit into this workflow with ease. One important
requirement is for the software package to be able to communicate
with commonly used architectural design programs such as Google
Sketchup, AutoCAD, and Revit. The latest efforts made by De-
signBuilder [152] and OpenStudio [153] align with this objective.

Conduct further research on optimization algorithms to de-
termine which ones are the best for different energy efficient de-
sign optimization problems. Building energy efficient design op-
timization problems can vary in objectives and design variables.
Because of this diversity, it is impossible to find one algorithm to
fit all design optimization problems. As the literature review
shows, the research in this area is relatively scarce.
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Improve the post-processing capability of the current techni-
que. Interpreting the design optimization results is as important as
carrying out the process. A convenient, easy-to-understand, and
graphical post-processing module is attractive to both architects
and clients, who are typically not familiar with the mathematical
details of the multi-objective optimization procedure.
4. Conclusions

Energy efficient design optimization is both a philosophy and a
technique to assist architects and other professionals in designing
buildings with higher energy efficiency and better overall perfor-
mance. As the technique is maturing, a comprehensive and in-
depth review from the perspective of architects is necessary and
timely. A certain set of criteria are proposed to select from a large
number of published papers and reports, yielding 116 works to
form the core literature.

The general procedure of the building energy efficient design
optimization technique is consistent in the core literature. It in-
volves two critical driving forces, namely energy simulation engine
and optimization algorithm engine (Fig. 1). In the optimization
process, design objectives need to be defined by the designer. The
rest should be highly automated.

The first paper presenting a design optimization study that
meets all criteria was published in 1983, more than 30 years ago.
Throughout the 1980s and 1990s, the research on building energy
efficient design optimization was not very active. Since 2000, it
has been steadily rising, especially in the past five years. The in-
creased interest is caused by several reasons including the em-
phasis on building energy performance and the rapid develop-
ment of building energy simulation technology.

Based on how design optimization is achieved, the building
energy efficient design optimization techniques can be categorized
into three groups, namely techniques integrating energy simula-
tion programs into generic optimization platforms, techniques
integrating energy simulation programs into special purpose op-
timization platforms, and customized techniques. A variety to
software packages such as Matlab, ModelCenter, modeFRONTIER,
GenOpt, jEPlusþEA, MOBO, ENEROPT, GENE_ARCH, Grasshopper,
etc. are used, making building energy efficient design optimization
a quite diversified field in terms of the means design optimization
is achieved.

Although the design objectives of the core literature are all
energy related, they can take different forms. Besides the design
objectives that are explicitly on energy such as minimizing the
annual energy consumption, implicit energy-related design ob-
jectives are also found such as minimizing CO2 emissions and
reducing life cycle costs. The design variables can be divided into
five categories, namely opaque building envelope, transparent
building envelope, shape and form, type of mechanical systems,
and operation of mechanical systems.

The most commonly used energy simulation engine in building
energy efficient design optimization is EnergyPlus, accounting for
47 works or 40.5% of the core literature. Other dynamic energy
simulation programs include DOE-2, TRNSYS, ESP-r, and IDA ICE.
Simplified energy simulation models and non-standard energy
calculation models are also found.

Evolutionary algorithms, derivative-free search algorithms, and
hybrid algorithms are the three types of algorithms used in the
building energy efficient design optimization technique, among
which evolutionary algorithms, represented by the family of ge-
netic algorithms, account for approximately 60%.

Examining the application of the energy efficient design opti-
mization technique on buildings yields some revealing findings.
Among 116 works in the core literature, 32 of them apply the
technique on real-world buildings, accounting for 27.6%, compared
with 77 on simplified and fictitious buildings, accounting for
66.4%. For the real-world buildings, the majority of cases are re-
novation. In terms of the type, residential buildings, office build-
ings, and educational buildings are the three most common ones.

The overall trend and development of building energy efficient
design optimization are obviously encouraging. However, ob-
stacles still exist. From the perspective of architects, some research
subjects need to be further studied, such as developing design
optimization software packages that better fit into the overall
design workflow, determining which algorithms are the best for
different energy efficient design optimization problems, and im-
proving the post-processing capability of the current technique.
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